Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes

نویسندگان

  • Adetola B. Adesida
  • Aillette Mulet-Sierra
  • Leila Laouar
  • Nadr M. Jomha
چکیده

BACKGROUND Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC) can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2) mediated cell expansion in monolayer culture under normoxia (21%O(2)) or hypoxia (3%O(2)). Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs) were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001) of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05). However, both constructs had the same capacity to produce a glycosaminoglycan (GAG) -specific extracellular matrix. CONCLUSIONS Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue formation cultures may be important in engineering different regions of the meniscus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions

BACKGROUND Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell population...

متن کامل

Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment

Alginates are important hydrogels for meniscus tissue engineering as they support the meniscal fibrochondrocyte phenotype and proteoglycan production, the extracellular matrix (ECM) component chiefly responsible for its viscoelastic properties. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to provide the best three-dimensional (3-D) ...

متن کامل

Comparison of hIGF-1 Gene Transfection to the hBMSCs and Human Meniscal Fibrochondrocytes

BACKGROUND Treatment strategies for meniscal injury are shifting from meniscectomy to repair, especially cell-based therapy. Delivering selected genes to donor cells can modify differentiation and proliferation. Efficiency of gene transfection and expression may relate to cell type. MATERIAL AND METHODS Full-length hIGF-1 cDNA was cloned into eukaryotic expression vector by PCR. Human BMSCs a...

متن کامل

Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes

The knee meniscus contains a mixed population of cells that exhibit fibroblastic as well as chondrocytic characteristics. Tissue engineering studies and future therapies for the meniscus require a large population of cells that are seeded on scaffolds. To achieve this, monolayer expansion is often used as a technique to increase cell number. However, the phenotype of these cells may be signific...

متن کامل

Beneficial Effects of Coculturing Synovial Derived Mesenchymal Stem Cells with Meniscus Fibrochondrocytes Are Mediated by Fibroblast Growth Factor 1: Increased Proliferation and Collagen Synthesis

Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012